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QUALITATIVE ANALYSIS OF FORMS OF MOTION I N  THE 
PROBLEN OF T m  MOTION OF AN A R T I F I C I A L  SATELLITE 

I N  T I B  NORMBL GRBVITATIONAL FIEID OF THE EARTH 

Ye. P. Aksenov, Ye. A. Grebenikov, V. G. Demin  

Introduction 

I n  the  theory of motion of a r t i f i c i a l  s a t e l l i t e s  whose 
o rb i t s  l i e  outside the earth’s atmosphere, the  basic perturb- 
ing fac tor  i s  the deviation of the ear th’s  gravi ta t ional  f i e l d  
from a central  f ield.  I n  an ear l ie r  paper [1 ] the present au- 
thorg showed that the poten t ia l  of the ear th’s  gravi ta t ional  
a t t G c t i o n  i s  f a i r l y  w e l l  approldmated, with accuracy t o  second- 
degree terms with respect t o  f la t tening of the earth, by the po- 
t e n t i a l  function of the problem of two fixed centers of equal 
mass situated a t  some imaginary distance frm each other. The 
expansion of t h i s  potent ia l  function, which we term the normal 
gravi ta t ional  f i e l d  of t he  earth, i s  expressed by the formula 

where P (d is a Legendre polynomial of order 2k; r = 2k 

= J m i  . x, y, z are  rectangular geocentric equatorial  
coordinates of th; s a t e l l i t e ;  f is  the gravi ta t ional  constant; 
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M i s  the  ear th 's  mass; c = 0,0331406 R R i s  the equatorial  
0' 0 

radius of the  ear th  ( the value of c 
of I. 13. Zhongolovich's r e su l t s  [Z]). 

S a t e l l i t e  motion is  studied in generalized e l l i p t i c a l  co- 
ordinates p, A, w, related t o  the rectangular coordinates by the 
formulas 

i s  determined on the basis  

I 
x = c 4 (1 + x2) (1 - LL2, 

z =  - CALL. 

sin w, 

cos w, 

The e l l i p t i c a l  coordinates p, A, w a re  determined from 
the following first integrals  of the equations of motion: 

2 
c1 9 

- 2 h A  4 - - 2fPl A3 + 2(c2 - h)A2 - - 
c3 c3 

'1 
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The symbols h, c , c denote a rb i t ra ry  constants of inte- & 
gration, with the cons tL t  % related t o  the magnitude of the 
t o t a l  mechanical energy h, of the s a t e l l i t e  in the following 

manner: 

2 
hl hc = - 

I n  formulas (3)-(5), T is  an independent regularizing variable 
re la ted t o  the time t by the d i f fe ren t ia l  equality 

From the  conversion formulas (2), it is  clear that r ea l  
values of the rectangular coordinate correspond t o  



Note a l so  that the conversion formulas (2) may be used t o  
derive the equations 

x2+ P 2 
2 

2 2 - - _  - 1, 
x2+3 

( 9 )  

Equation (9) demonstrates that i f  the d i f f e ren t i a l  equa- 
t ions  of motion allow a solution X = const, then the moving point 
will be l i e  consistently on an el l ipsoid of rotation. Similarly, 
if p = const i s  a solution of the equations of motion, then the 
moving point w i l l  l i e  on a hyperboloid of revolution of one sheet 
(1 0), and, f ina l ly ,  i f  there exists a solution w = const, then 
the motion of the point w i l l  take place in the meridional plane 
passing through the Oz axis. 

down in to  three categories depending on the value of h . Motions - 
corresponding t o  h > 0 w i l l  be termed el l ipt icalmotions.  
corresponding t o  h < 0 w i l l  belong t o  the class of hyperbolic mo- 
tions. 
t o r i e s  f o r  which h = 0. 

This c lass i f icat ion of motions i s  accounted f o r  by the 
argument that when is  p u t  equal  t o  zero in the  equations of 
motion, these equations revert  t o  the d i f f e ren t i a l  equations 
of the two-body problem, and then the motions belonging t o  the 

A l l  forms of motion in the problem discussed may be broken 

Motions 

The class of parabolic motions w i l l  embrace a l l  trajec- 

c 
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first  class  w i l l  take place on Keplerian el l ipses ,  the t ra jector-  
ies belonging t o  the second class w i l l  be hyperbolas, and the 
t ra jec tor ies  belonging t o  the third class w i l l  be Keplerian para- 
bolas. 

t ions of the problem w i l l  be found same which l i e  en t i re ly  with- 
in the in t e r io r  of the earth. These t ra jec tor ies  are of no val- 
ue in practice, and we shall therefore ignore them in the dis- 
cussion. Motions occurring on t ra jec tor ies  which pass even par- 
t i a l l y  outside of the ear th 's  surface w i l l  be termed real motions. 
Among these motions w i l l  be found some which take place on re- 
s t r i c t ed  t ra jec tor ies  which l i e  en t i re ly  outsiae the ear th 's  sur- 
face. These motions will be termed s a t e l l i t e  motions. B a l l i s t i c  
t ra jec tor ies  w i l l  be the tern applied t o  those res t r ic ted  trajec- 
t o r i e s  lying p a r t i a l l y  inside the earth. 

Among the  t ra jec tor ies  defined by the d i f f e ren t i a l  equa- __ 

1. INVESTIGATION OF THE EUIPTICBL COORDINATE p 

The general solution of the d i f f e ren t i a l  equation defining 11 75 
the  e l l i p t i c a l  coordinate 
nomial 

~r, depends on the roots of the poly- 

The roots  of the polynomial f (p) are found from the expression 
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(1 3) 
h - c2 f ,/ (h  + ~ 2 ) ~  + 2 h 4  

2h 

Let the roots of f (p) be f p, , f p2. The discriminant 
2 2 

f 2hc f o r  the class of e l l i p t i c a l  motions (h > 0) 2 1 
A = (h + c ) 

w i l l  always take on a nonnegative value. 
of four  roots belonging t o  the polynomial f (p) ,  a t  l e a s t  two (which 
we shall term +, p 1 

From th is ,  w e  infer that 

t o  be specific) w i l l  be r e a l  numbers, whereupon 

2’ Depending on the  values of the  other two roots f p 

we may encounter the following cases i l l u s t r a t ed  i n  Fig. 1: a )  
p2 i s  a complex quantity; 

constraint  Ip I > 1 ; d) 

p2 = 0; 

b) u i s  a r e a l  number satisfying the 
2 

e) p is  a r e a l  number and lp 1 < 1 ; 
2 2 2 

e) p2 is a real number equal t o  1, lp21 = 1 ;  f )  \pl I = 

= I q  = 1. 
From formula (12), w e  infer that the domain of r e a l  p 

values is defined by the  inequality 
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In case a), the polynomial f ( p )  sa t i s f i e s  condition (15) at 
Ip I 2 19 I 2 1 , but a t  these values of the  variable p, the rec- 
tangular coordinates x and y w i l l  not be real. We may 
therefore neglect case a). Case b) need not be considered 
either,  since the inequality I@,\ > 1 i s  equivalent t o  the in- 

2 equality 2hc < 0, which cannot occur i n  the case of e l l i p t i c a l  
1 

notions. For case d), it follows t h a t  z = 0, i. e. we obtain equa- 
t o r i a l  orbits. Case e) is  realized when c = 0. But under that 

1 
condition we infer from eq. (5) that w = w 

polar orbits.  
separate a r t ic le .  

that case polar orb i t s  w i l l  a l s o  occur. 

Le., the case of 
0' 

Cases d) and e) will be discussed in d e t a i l  in a 
Case f )  may occur a t  c = 0, h = - c and i n  

1 2' 

For case c), we infer from the condition 0 < lpl  1 that 

(1 6 )  2 
2 1  

2c + c < 0. 

The inequality (16) a ids  considerably i n  simplifying the search 
f o r  roots of the polynomial dependent on the e l l i p t i c  coordinate 
A. 

The spa t i a l  motions of a pa r t i c l e  a re  consequently 
possible only in case c), with the exception of sane motions i n  
the plane. 

The function f ( p )  may be factored in to  
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Then, from equation (3) ,  w e  obtain: 

As a r e su l t  of the  inversion of the e l l i p t i c  in tegra l  11 76 
(18), we obtain the e l l i p t i c  coordinate @ as a €'unction of the  
regularizing time T in the form 

where 

a =  p J  2h , 
1 

7 is an integration constant. The modulus of the e l l i p t i c  

function i s  

0 

k = - .  c12 
kl 
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i 
1 I ! t, i 

Fig. 1. 
corresponding t o  various values of p 

a. complex guantity; b. r e a l  number ( I N  I > 1) ;  
c. r e a l  number ( 

e. real number ( 1p21 = 1 ) ; 

Possible f o r m s  of the p lo t  of f (p), 

2: 

2 I -e 1 ) ; d. k2 = 0; 2 
f. realnumber 

( I l l  I = lP21 = 1). 
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2, 
E L L I P T I C  COORDINATE A, CRITERION FOR THE 

STUDY OF T B  QUADRATURE DEFINING THE 

EXISTENCE OF REBL MOTIONS 

Integration of e p t i o n  (4) yields 

where the polynanial $ ( A )  is expressed by the  formula 

$ ( A )  = - 2 h A 4 - a  A3 f 2(c2 - h)A2- 2fM A + (2c2 + c:), 

(23) 

c3 c3 

U e  designate the r o o t s  of the polynomial + ( A )  as +’ A2’ A3’ 

A l l  coefficients of the  polynomial $(A) are  negative, con- 

Depending on the  values of the roots of the polynomial 
sidering the  inequality (16)’ so that i ts  real r o o t s  can be only 
negative. 
$(A), we may distinguish the cases: 
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In our subsequent discussion, we shall demonstrate that 
no r e a l  motions occur i n  some of the cases l is ted.  The exis- 
tence of r e a l  motions requires the fulfillment of the follow- 
ing constraint inferred from formula (9): 
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where R is the polar radius of the earth, or 
P O 1  

For convenience, we consider, instead of the polynomial 
$ ( A ) ,  a newly introduced polynomial ~ ( 1 )  having the same roots 
as *(A):  

c p ( ~ )  = 14 + ah3 + bX2 + aX + d. (26) 

The coefficients a, b, and d a r e  obtained from the formulas 

2c2 + c1 2 
(27) a = - ,  fM b = 1 - 2 ,  d = -  

c3h h 2h 

These coefficients for s p a t i a l  motions belonging t o  the e l l i p t i -  
cal class  a r e  positive, since 



b > d +  1. 

Note that no real motions occur i n  case a, since 
$(A) 0. 

3. TREATMENT OF THE CASE b (A, = h2 = A3 = X4) 

13 

The polynomial ~ ( h )  is plotted graphically i n  t h i s  case, 
i n  Fig. 2. 

, 

Fig. 2. P lo t  of 
the polynomial cp(A) 

/178 



Note that i f  real motions were t o  occur in this case, 
they would have t o  t ake  place on the e l l ipso id  

Bearing in mind the f a c t  that the coefficients of h and 
3 

h 
we may obtain 

in the polynomial ~ ( h )  are equal, and using Vietars  theorem, 

3 h = h  
1 1 -  (30) 

Hmce, A is  e i ther  equal t o  0 or t o  +, 1. But none of 
1 

these proposed roots will sat isfy the  cr i ter ion f o r  the ex- 
istence of realmotions,  and we conclude that there a re  then no 
real motions, in t h i s  case. 
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The graphical behavior of the polynomial cp(X) i n  t h i s  case 
is seen i n  Fig. 3. 
following equations 

For t h i s  case, Vieta’s theorem yields the 

3A + A = - a ,  1 4  

2 
1 1 4  31 + 31 A = b, 

A3A = d. 
1 4  

From the  f i rs t  and th i rd  of equations (31), we f ind that 
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Taking into account the  f a c t  that a l l  the roots of q d X )  a re  
negative, we shall have 

1 - 3 q  
> 0. 

A2 - 3 
1 

This last inequality i s  sa t i s f ied  a t  

I- 

1 I 
- 4 3  < A 1 < - -  

$7 

(33) 

( 3 4 )  

Since the region where motion is possible is defined by the 
inequal i ty  A, < A < Ah, the e l l i p t i c  coordinate w i l l  not exceed 

&- in absolute value. This l a s t  constraint stands i n  contra- 
dict ion t o  the cr i ter ion for the existence of realmotions. We 
then infer that no r e a l  motions occur i n  t h i s  case. 
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We shall now prove t h a t  i f  all the  roots of cp(A) are 
r e a l  and unequal, then s a t e l l i t e  and b a l l i s t i c  motions exist. 
Moreover, we shall prove that two roots of the four a r e  included 
in the open interval  (-1 , 0). 
Fig. 4. 

the  functions 

The function cp(A) is plotted in 

The Stuxm system [3] f o r  the polynomial cp(h) consists of 

The coefficients of functions (35) a r e  expressed by 
the  fonaulas 
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ab - 6a a2- 16d , b =  9 d2 = 9 
3a2 - 8b 

2 a =  2 

2 
2 

8a 

5 
16a: 

a3b2b3 - a?d2 2 - a2bz 2 
a =  
4 2 

3 
a 

We infer from Sturin's theorem [3] that a l l  the roots  
of the polynomial cp(X) are  real and unequal on the open inter-  
v a l  (- OD, + -), if the inequalit ies 

a > 0, 
2 

a > 0, 
2 

a > 0. 
4 

(37) 
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a l l  hold simultaneously, Although we know a l l  the roots t o  be 
negative, we nevertheless consider the in te rva l  (- 
in order investigate the l e a s t  number of inequalit ies compris- 
ing the system (37). To solve the system (37), we elcarnine the 
following functions in many variables: 

$. m) 

/180 

2; =-3&+ A2 f 1 2 y  - 18x2 - 42 - d (6x2 - 16y), 
2 

- 243xg - 1168x62 + 11 52x6y + 134,'+$53 - 256x2y5 - 

where f (x, y, d) is  a polynomial of not htgher than ninth 
degree in x and y. 
the  inequal i t ies  

The inequalit ies (37) are equivalent t o  

z > 0, 
1 

z > 0, 
2 

z3 > 0, 

(39) 
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Fig. 3. Slope of poly- 
nomial cp(h) i n  the case 
x =x =x <x <o. 
1 2 3 4  

To solve the  inequalit ies (39), we resor t  to polar co- 
ordinates. The functions x , in  polar coordinates assume 

the  form 
1 &2' z3 

z = 3r2 cos 2 cp - 8r sin 9, 
1 
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i 

Fig. 4.. Slope of polynomial 
~ ( 1 )  in the case A, < X < 2 

A3 < x4 < 0. 

The coefficients a (cp) and bo (cp) are expressed by the fcmd.as 
0 

2 2 2 2 ag('P) = cos cp (sin cp-3 cos cp), bo(cp) = 9 cos8 rp(sia cp - 4 cos2 cp). 

(41 ) 

At sufficiently large values of r9 the inequalities (39) are 
fulfilled when 
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For posit ive values of x and y (x = a, y = b), the  con- 
straints (4.2) a re  f u l f i l l e d  when 

n 
2 < t a n c p 9  a r c t a n 2 < c p < -  . 

2 
(43) 

Consequently, f o r  large values of the coefficients a and b, the 
polynomial cp(X) has four r e a l  and unequal roots and, i n  accord 
with the upper-bound theorem for  the absolute roots of a poly- 
nomial [3], the  roots may be fairly large, gene rd ly  speaking. 

We shall now show t ha t  the roots 'h and 1 are included 

i n  the open interval  (- 1 , 0). For th i s ,  w e  apply the Budan- 
Fourier theorem [3] t o  the  interval (-1 , 0). The polynomial 
?(A)  and i t s  derivatives t o  the 4-th order have the form 

3 4 

cp11 ( A )  = 1 2X2 f 6ah f 2b, 

cp"! (A) = 24A + 6a, 

(pIV(A)  = 24- 

(44) 
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when = 0, ~ ( 0 )  > 0, c p 1  ( 0 )  > 0, cpl (0 )  > 0, cpl" ( 0 )  > 0, & 
( 0 )  > 0. If X = -1, then it is  mandatory that cp (--I ) > 0, 

since cp (-1 ) < 0 would be equivalent t o  the  condition tan (9 < 2, 
but t h i s  stands i n  contradiction t o  the constraints (43) .  Note 
a l so  that, f o r  r e a l  motions, cp1n (-I) > 0, i.e., a > L+. If we 
assume that 
b < 6 ,  d < 5. 
would a l so  be less than 6 i n  absolute value. 
variation in the signs of the functions (44) a t  X =  -1 would 
occur, i n  the  case of r e a l  motions, i n  one of the four  variants: 

(-1) < 0, then t h i s  w i l l  mean tha t  a < 4, 
But in  t h i s  case, the roots of the polynomial 

Consequently, the 

- 
I 

+ 
+ 
- 

+ 

+ 

- 
I1 

+ 
c 

c 

+ 

+ 
- 

I11 

-I- 

- 

f 

+ 

-I- 

_L 

I V  

f 

+ 

f 

+ 

f 
- 

The values of the functions (4.4) a t  h = - 1 w i l l  be found from 
the  formulas 
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The corresponding inequal i t ies  for  the cases I, 11, and I11 are  
not contradictory. For the case IV, we f ind tha t  the f i rs t  and 
second derivatives w i l l  be positive when a 4, but, a s  indicated 
ear l ie r ,  t h i s  case consti tutes unreal motions. 

of  r e a l  and unequal roots yields, f o r  the variable A, the ex- 
pression 

The inversion of the e l l i p t i c  in tegra l  (22) fo r  the case 

where 
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The modulus of the e l l i p t i c  sine, k, is expressed by the  formula 

or 

The coordinate w i s  defined from the  quadrature 

(k2 + A2) dT 
w = c  + c  

5 1  
(1 - $1 (1 + 12) 

w =  c 5 +  clJ1 - ctJ2 ’ 

where 
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dT 
J = l  9 

1 - p2 1 

The in tegra l  J 

manifests the same form: 

fo r  a l l  the cases t reated i n  the a r t i c l e  
1 

wheren((9, n, k) i s  an e l l i p t i c  in tegra l  of the th i rd  kind: 

n = - p ; .  ( 56) 

The in tegra l  J [a f te r  substi tuting x = sn Q 2 1 ( 7  - T,)] 
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is  expressed i n  the form 

The coefficients in (57) a re  expressed i n  terms of the co- 
e f f i c i en t s  A, B, C, D by the formulas 

2BD (BC -AD) B2C2 - A2D2 
a =  
0 al (B2 + D2) ’ al (B2 + D2) ’ 

b = A 2 +  C2. 
2 

The second term in formula (57) appears i n  the form of 
the  sum of two e l l i p t i c  integrals of the th i rd  kind with com- 
p lex  conjugate parameters. 
terms of e l l i p t i c  integrals  of the th i rd  kind with r e a l  para- 
meters [A ] .  Here, we present only the form of these expressions, 
without going into d e t a i l  as  t o  the values of a l l  the coefficients, 
which a re  expressed in a rather cumbersome manner i n  terns of the 
roots of the polynomial cp(1). 

These integrals  may be expressed i n  

Note tha t  it is  not feasible  t o  
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make use of the foraulas mentioned in prac t ica l  calculations. 
In practice, it would be b e t t e r  to  resor t  t o  expansions of 
e l l i p t i c  functions and e l l i p t i c  integrals, bearing i n  mind 
the f ac t  that the moduli of the e l l i p t i c  functions and inte- 
grals are extremely small quantities in the case of s a t e l l i t e  
mot ions. 

in tegra l  J2 may be s ta ted in the form 
Taking the Hose  transformation [4] i n to  account, the 

where the functions L and L have the form 
1 2 

(i = 1, 2). 

The coefficients 1, , 12, gi9 ni, Qi a r e  re lated t o  (58) in 

a cumbersome fashion. 
Accordingly, we derive a formula of the form: 
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f o r  the coordinate w. 

z 
A 

. 

! 

Fig. 5. Region of possible 
o rb i t  positions i n  the case 

1. earth; 2. outer e l l ipsoid;  
3. inner ell ipsoid; L, hyperboloid; 
region containing orb i t s  latched. 

A1 < A 2 < A 3 < A h < 0 :  

The relationship between the t rue time and the regular- 
i z ing  time is  found from a formula of the type 
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2 

where E (rp,k) is  an e l l i p t i c  integral  of the second kind, and 
the  functions and L are expressed by formulas similar t o  
(60). Note t& form& (62) should not be used in practice, 
since the expansion of the integrand functions into se r i e s  
with subsequent integration will substant ia l ly  reduce i n  the 
computational labor. 

Fig. 6. Slope of polynomial 
?(A)  in the  case L, < h2 = 

= A  = I  <o .  3 4  

In the  case d, the t ra jectory l i e s  between two con- 
and X = h 

1 2 focal el l ipsoids  X = X and outside the hyper- 
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If \A2\ < 30, we w i l l  have b a l l i s t i c  t ra jector ies ,  i. e., 

i n  t h i s  case one of the ell ipsoids will l i e  inside the earth, 
and the  region where the t ra jector ies  may be accomodated w i l l  
occupy the volume outside of the hyperboloid from the ear th 's  
surface t o  the el l ipsoid (just as i n  case e, below). 

a l l  cases (or t o  the  ell ipsoid,  when b a l l i s t i c  t ra jec tor ies  
a re  involved), and t o  the hyperboloid by virtue of the contin- 
u i t y  of the derivatives with respect t o  7 of the coordinates 
x, y, and 2;. 

The t ra jec tor ies  w i l l  be tangent t o  the el l ipsoids  i n  

6.  THE CASE e ( A ,  < A2 = A3 = 14 < 0) 

The polynomial ?(A) f o r  this case is plotted i n  Fig. 6 .  
The equations expressing Vieta's theorem fo r  case e a re  

given by the formulas 

A A  3 = d .  
1 2  



. 

32 

From the f i r s t  and th i rd  equations, we f ind that the 
existence of r e a l  motions (A, < - 30) requires that the in- 

equality 

be sat isf ied.  

intervals -0.59 < X2 < -0.58, 0.56 < X < 0.58, 90.5 < X 

Taking in to  account the f a c t  that the value of X must be 

negative, we may write that -0.59 < A2 < -0.58. A t  these 

values, b > d + 1. 
Accordingly, i n  case e only b a l l i s t i c  t ra jec tor ies  are 

possible. The coordinates p, X, and w a re  expressed as 
follows : 

A l l  solutions of the  inequality (64) l i e  within the 

2- 2 

2 

c1 w = c5 - 77 + - ( c p ,  n, k )  - 
a 
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where 

J 
Mq = 

4P (1 f 

1: - 2 



The relationship linking the time t and the variable T has the rn 
form 

An idea of the arrangement of  the t ra jec tor ies  i n  t h i s  case may 
be gained from Fig. 5; the t ra jec tor ies  f i l l  the space between 
the  ear th 's  surface and the ell ipsoid A = '4. 

7. THE USE f (POLYNOMIAL a(A) HAS TWO PAIRS 
OF MULTIPLE ROOTS) 

The function c p ( A )  f o r  this case i s  plot ted in Fig. 7. 
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Fig. 7. Slope of polynomial 
rg(X) in the case l., = X2 

X3 = X4 < 0. 

We sha l l  prove tha t  realmotions a re  possible i n  t h i s  case 
only on the  surface of the ell ipsoid X = X 

X = X conpletely inside the earth. In fac t ,  the  relationship 

linking the  roots and coefficients of polynomial cp(X) here dis- 
plays the form 

with the el l ipsoid 
1’ 

3 

2’4 + 2X3 = - a, 

+ X2 = b, 
3 
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A A  2 2 -  - d .  
1 3  

From the first and th i rd  equations in (70), we may ar r ive  a t  

1 + A = h l h 3 ( k ,  + A3) 
1 3 

o r  

+A3 = 1. (72) 

1 Consequently, when L, * - 30, then - - 
30 

e l l ipso id  corresponding t o  A = h will be completely inside 

the  earth, i f  we take in to  account the cr i ter ion f o r  the ex- 
is tence of r e a l  motions (25). From the l a s t  equation in (70) 
and from (72), we see tha t  d = 1 .  Coefficient b will be 
la rger  than 4, a s  we rea l ize  from the second equation i n  (70). 
Note that A = A The argu- 

1 
ments offered lead us t o  the conclusion tha t  real motions a re  

* h < 0, Le. ,  the 

3 

s a t i s f i e s  the  equations of motion. 



37 

possible on the ellipsoid. 

coordinates and the time t o  T in t h i s  case take on the particular-  
l y  straightforward form: 

The formulas for the relationships linking the e l l i p t i c  

The rectangular coorsinates of the point x, y, x are  ex- 
pressed by the formulas 

I 

z = - b sn [o( T - To)], 1 2  J 
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Fig. 8. Region where o rb i t  motions 
a re  possible in the case when v(X) 
has t w o  pa i r s  of equal roots: 

1. earth;  2. ellipsoid; 

3. hyperboloid; orbi ts  l i e  in 
hatched region. 

Fig. 9. 
i n  the  case $ = A2 < X3 < 

Slope of polynomial q d A )  
< 0. 
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where a , b 
1 1  

occurs: 

a re  the semiaxes of an el l ipsoid on which motion 

The t ra jector ies ,  generally speaking, f i l l  the e l l i p t i c  b e l t  
(Fig. 8) everywhere, with the intersection of the el l ipsoid 

x i -  2 - z2 = 1. i- 2L = 1 and the hyperboloid 2 +- s;! - 
a 1 bf c2 (1 - 1;) c y  

obtained a s  a result. 
tangent t o  t h e i r  l ines  of intersection. 

In this case, the  t ra jec tor ies  w i l l  be 

The function y(A) corresponding t o  this case is plot ted 
in  Fig. 9. 

If a l l  the roots of the polynomial ~ ( h )  a re  real ,  with 
only one of them (the leas t )  a double root, then t h e  relation- 
ships expressing Vieta's theorem w i l l  be given by the fomulas 



2A + A  + A  = - a ,  
1 3 4  

$A A = d. 
3 4  

We see from equations (76) that 

J 

m Now consider (77) i n  greater detai l .  The cr i ter ion f o r  
t h e  existence of r e a l  motions (25) i s  f u l f i l l e d  when 

Under t h i s  condition 2A1 > 0, and 
1-x1 ”  



Taking into account formulas (78) and (79), we proceed 
from (77) t o  

O < X X  <1. 3 4  

B u t  t h i s  constraint i n  turn implies that 

The fonnulas advanced show that when the el l ipsoid 
X = k, has dimensions greater than those of the earth, then 

the  values A = X and A = A correspond to el l ipsoids  whose 

semiaxes are l e s s  than uni ty  and which are  completely inside 
the  earth. 

as follows: 

3 4 

Inequality (28) b > d f 1 f o r  that case may be s ta ted 



c2 

1 - hl 2+ 
> - a  

Inequality (82) is always f u l f i l l e d  a t  values XI < -30. 

, 

Fig. 10. Slope of poly- 
nomial ?(A)  in the case 
'4 < x2 = hg < hl, < 0. 

Hence it can be concluded that real motions are possible 
The formulas f o r  the in  the el l ipsoidal  b e l t  i n  t h i s  instance. 

e l l i p t i c  and the rectangular coordinates have the same form as 
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the  formulas in the preceding section, except f o r  the differences 
i n  some of the expressions f o r  constant coefficients. 

9. THE CASE h (A, < A2 = A3 < A1 C 0 )  

The polynomial v(A) f o r  t h i s  case is plotted in Fig. 10. 
The relationships between the  roots and coefficients of 

the polynomial (g(A) (Vieta theorem) are  given in  t h i s  case by 
t he  equations 

A + 2 5  + A4 = - a, 1 

Fran (83), we may derive the relationship 
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Al + 14' - 2x2 (+A4) - 11, 
1 - A2 

2 

and, taking into account the constraint b > d + 1, we obtain 

(A2 2 - 1) ( + A 4  - 1) < 2A2(+ + A4). 

Ue shall show that only b a l l i s t i c  t ra jec tor ies  are 
possible in case h, i. e. , we shall show that the e l l ipso ids  
corresponding t o  the values X = A 

inside the  ear th  when A, < -30. 

and X = A are completely 
2 4 

Assume A < -30. Then the roots A, and A w i l l  be, a 4 2 
f o r t i o r i ,  l e s s  than -30. But, under these conditions, - 2A2 > 0 

14; 
and k, X 4  -1 > 0. 

that the right-hand member o f  (84) is a posit ive quantity, and, 
because the roots A and A a r e  negative, the left-hand member 

of that equation w i l l  be negative. Consequently, if we assume 
that a l l  the el l ipsoids  envelop the  earth, equation (84) w i l l  
not be sat isf ied.  

Taking these inequalit ies into account, we f ind 

1 4 

Assume fur ther  A < -30, but -30 < h4 < 0. Then 2 
w e  shall have 



45 

( A h  - 1 )  This in  turn implies that 2h2 
1 - 1 2  1 4  

2x2 1 
O C  < -  . 

1 - h2 1 5  
2 

<,. 1 But, i n  that 

For (84) and (85) t o  be W i l l e d ,  necessarily h h - 1 < 0. 1 4  

1 case, 1% + A41 < 15’ and this contradicts the  inequalit ies 

h, < -30 and h2 < -30. 

h = A2 and h = h4 

Hence, we may infer  that the el l ipsoids  

l i e  completely inside the earth. 
We shall now demonstrate t ha t  a s e t  of roots h X2, and 

1’ 
A,+ may be so chosen as t o  sa t i s fy  (84) and (85) as w e l l  as the 

c r i te r ion  f o r  the existence of r ea l  motions. From (84), we 

This equation, in the case of near-zero negative values 
of h and a t  values h = - 1 - e, where e is  a suf f ic ien t ly  

small posit ive w t i t y ,  w i l l  yield values less than -30 f o r  

L., . 

4’ 2 

Under these conditions, (85), which a re  equivalent t o  the 
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inequality b > d f 1, w i l l  a lso be valid. 
In SUIQ, we may draw the conclusion that ,  i f  a l l  the 

roots of the polynomial y(X) are  real ,  and the  middle root of 
these has a mult ipl ic i ty  of two, then there exist only b a l l i s t i c  
t ra jec tor ies  among the  realmotions. 
space between the surface of the ear th  and the  el l ipsoid X = XI. Motion w i l l  occur in  the 

The formulas f o r  the e l l i p t i c  coordinates p, X, w and t 
as  functions of the regularizing variable T w i l l  be of the form 

1 

4 

e U - ml 
+ + M2 - h [ ( e U  - m212+ n21 + Ml' + N1 a r c  tan 

9 1 
n 2 2 

eu - m2 } 
? arc  tan f M P 2  + N 2  

n2 2 n 



where 

and m,, m and n 1, n2 are, respectively, the r e a l  and imaginary &EL 2 
par t s  of the complex conjugate roots of the equation 

4 3 2 a x  + a x  f a x  f a x f a  = O ,  (90) 
4 3 2 3 I ,  

The quantit ies A, M M N a r e  defined by the equations 
1 2) N1’ 2 



7 

A + M  + M 2 =  ( 1 + a ) ,  2 2  

- 2 ( m  + m 2 ) A - 2 m H  - 2 m M  + N  + N  = - 4 + t ! + a 9  4 

1 

1 2 1  1 2  1 2 

I (2 + 2 + 

- 2 m N  = 6 - &  2 + 6 a 4 ,  + (a2 + nf) H - a2~1 

m + n2 + ng) A + (m; + n$ M, + 
1 2 1 2  1 

1 2  1 2 

2 2  [-  ;$31 (m2f 2 2  n2) - 2m2 (m 2 2  + nl)] A +  (m2 + n ) N + 

+. (4 + nl) 2 N~ = - 4 + b 4 ,  

1 2 1  

2 2 2 2  

2 se U - 1 e U -a 

9 
t = c6 + (p2+ A:)T - kL E (v,k)+P1* + Q, arc tan - 

1 0 ea-2seu+1 r 

7 

where 

2A2 - A, - A4 
s =  

9 



+ 16)c1A2 2 2  + 16A2 4 + 16+A4 2 2  - 32)4A2 3 - 32A3A + 
2 4  

1 9  

'1 
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The polynomial ?(A) for the case i is  plotted in Fig. 11. 
Vietats theorem for the mot s  of the polynomial ~ ( 1 )  i s  

expressed by means of the equations 
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2 X X A  = d .  
1 2 3  I 

Fig. 11. Slope of the poly- 
nomial y(A) in the case 
$ < 12 < A3 = X4 0. 

In a manner similar t o  (84) and (85), we here exhibit the for- 
mulas 



dh3 

(97) i 
It i s  real y shown that the e 

3 

ipsoid corresponding t o  
the value of the multiple root A = X l ies  inside the  earth, 

I n  fact ,  the assumption that X C -30 implies the inequality 

0 < +A2 < 1. 

and hence A, < -30 and X2 < -30. 

from (97) that if the m u l t i p l e  root X 

interval (-1, 0), then these relationships w i l l  hold, a t  least 
that the root X 1 

3 
This inequality cannot be valid since A < X2 < A3 1 

On the other hand, it is  clear  

i s  chosen on the  open 
3 

may be made less  than -30. 

The motion of the point w i l l  take place between the 
el l ipsoids  

+ - -  - 1, 
c2 (1 f if) c2A2 

1 

2 I; $ + ?  f - -  - 1. 
2 (1 + A;) c y  
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If the initial conditions a re  so specified that both 
roots, h and X a re  l e s s  than -30, then satellite motions 

w i l l  occur. If, on the  other hand, X > - 30, b a l l i s t i c  

t r a j ec to r i e s  w i l l  occur. 

1 2' 

2 

The foxmulas for the  coordinates (L, X, w are  of the f o w  

9 
A +  B cos u 

C + D cos u 
A =  

+ n2 1 I+ 
taIl;-y 

f a r c  tan + 2 In [ ( tan U - - m2l2+n;] + MI? + N1 

"1 9 2 2 

U 

). 
tan 2 - 1 %  

i- M ~ 2  + N2 a rc  tan 

2 
n n2 
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where 

The coefficients M , M N N are defined in terns of 
1 2’ 1’ 2 

the  following system of algebraic equations: 

’ (101) 



- 
A =  B2C (C - 2D) - A% (D - 2B) 

9 
B2 I- D2 

(1 02) J - B2C (C  + 2D) - A% (D + 2B) 
B =  ? 

B2 f D2 

The time t depends on the variable 7 in accord with the 
f o m l a  

2 2  rr2 t = c + (p + L1) T - - E ((9, k) + 
Q 6 1 
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where 

B =  [C(A2D2 - B2C2) - 2 (ABD - B2C)] . 
j - 2 3  D2 

The regions of space in  which the motion of the point mass w i l l  
take place are depicted in Fig. 5. 
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11. THE CASE j (hy  = h2 ; ROOTS hq and XL I M G I N A R Y )  

The polynomial cp(h) f o r  t h i s  case is plotted i n  Fig. 12. 

Fig. 12. Slope of poly- 
nomial cp(X) in the case 
X = X and imaginary h 1 2 3 

4- and X 

We now prove tha t  when the polynomial cp(X)  has two imagin- 
a r y  roots and one r e a l  root of mult ipl ic i ty  2, r e a l  motions are 
possible on the el l ipsoid 1 = A . For t h i s  case, the relation- 

ship linking the roots and the  coefficients of cp(X)  are  re- 
presented by the equations 

1 
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2X + 2 p = - a ,  
1 

2 -  X2 + a l p  + (p2+ q 

2~3 +- 2i1 (p2 + q2) = - a, 

- b 
1 

1 

2 2  2 Xl (P + q ) = d, 

I- 

( 106) 

and A = p + iq, X = p - iq. 
3 4 

We shall now show tha t  the equations (106) and the in- A22 
equality (28) are valid a t  values + < - 30. 
(1 06), w e  may derive 

From the equations 

(1 - q) (p2 + q2 - 1) > - 4X1p. 

(107) 

Inequality (108), as the counterpart inequal i t ies  above, ex- 
presses the constraint b > d + 1. 
s ta ted  as 

Inequality (108) may be 
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(1 09) 

A t  + < - 30 the fraction d is positive, so that the 

hl 
fol loving inequality holds: 

2 
(P2+ q2 - 1) 

< - 4 P .  
P 

Inequality (1 10) holds when p < 0. 
may be determined from the  formula (107): 

The quantity p2 + q2 

2 p2. q - 1 = 
1 

h 

Assuming X < - 30, and taking p < 0 i n to  account, we 
1 

shall have the constraints: 

o < p  2 2  + q  < l o  

I 
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2 2  for p + q . Accordingly, - 1 < p < 0. A t  these values of p, 
inequality (7 08) will always hold. 

We see then that real motions are possibleatd that they 
will occur on the el l ipsoid 

2 Z +- -  - 1. G+y2 
c2(1 + 1;) $1; 

The formulas f o r  the e l l i p t i c  coordinates p, X, w and 
the  rectangular coordinates x, y, 2; are l i s t e d  in Section 7 
( f o m l a  (73)]. 

The behavior of the polynomial v ( X )  i s  graphed in Fig. 13. 
We shall prove that when the polynomial cp(X) has two r e a l  

and two imaginary roots, then both s a t e l l i t e  and b a l l i s t i c  tra- 
jec tor ies  w i l l  occur among the realmotions. The roots and co- 
e f f i c i en t s  of cp(X) are  interrelated by the formulas 

A + A + 2 p = - a ,  
1 2 
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Bearing i n  mind b > d + 1 and the f a c t  that the right-hand 
members of the first and th i rd  equations in (113) a re  equal t o  
- a, we may arr ive a t  

We see from inequality (114) that 

For s a t e l l i t e  t ra jector ies ,  A, < - 30 and h2 < - 30, so that 

+ A 2  - 1 > 0, and + f x2 < 0. B u t  i n  t ha t  case, (1 14) may 

occur only when 

2 2  o < p  + q  <1. 

For b a l l i s t i c  t ra jector ies ,  the constraint (1 16) is  not mandatory. 

f o m  
The formulas for the  e l l i p t i c  coordinates w and h have the 
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where 

A = - mhj - nh2, 

C = - m - n ,  D =  - m +  n, 

B = - mhl f nA2, 

n = J (p - 1,,2f q 2 ,  

(5 1 =L. 

The modulus of the function en (5 
1 

(7 - T1) is expressed 

by the fonnula 
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Fig. 13. Slope of poly- 
nomial cp(X) i n  the case 

A, 12 < 0 a d  5, 14 
imaginary. 

Inequality (11 6) demonstrates that, for s a t e l l i t e  motions, 
the  modulus k 

1 
is  an extremely smal l  quantity. 

The coordinate w is  determined from the  formula 
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The in tegra l  J , just as i n  case d, is represented as the 
2 

sum of two e l l i p t i c  integrals  of the th i rd  kind with complex 
conjugate parameters. 
may r e s t a t e  the i n t e g r a l J  

Using the Hoiiel transformation [ A ] ,  we 
i n  the form 

2 

where the  functions L 

The relationship between t and T is  given by a formula of the 
form (62). 

hardly suited t o  use in computations of concrete satell i te 
orbits.  
having the required accuracy by a se r i e s  expansion of the inte- 
grand functions i n  powers of small  values of k and k 

a r e  of the form 

and L 
1 2 

are  of the form specified by (60). 

As was mentioned i n  Section 5, formulas (61) and (62) a re  

It would be much quicker t o  obtain numerical r e su l t s  

The formulas f o r  the  rectangular coordinates 1' x, y, and z 

I ( A +  B cn U > ~ + ( C  + D cn v>2 
sin w, x =  c 

C +  D cnu 

,/TU ,/ (A + B cn u > ~ + ( c  + D ~n u ) ~  

A + B c n u  
C +  D c n u  

cb sn u t 2 
2 ; =  - 
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U = (5 (7 - T o ) ,  

u = ( 5  ( 7 -  
1 

The t ra jec tory  l i e s  between two confocal e l l ipsoids  h = h 
1 

h = h and outside the hyperboloid 

and 

2’ 

The regions of space in which the motion occurs are shown 
i n  Fig. 5. 

1 3. SOME CONCLUSIONS 

The analysis carried out in  the preceding sections makes 
it possible t o  arr ive a t  certain conclusions. If an a rb i t ra ry  
integration constant h is positive, then the motion of a point 
mass w i l l  e i ther  occor between two confocal e l l ipsoids  of low 

4 4 
I 

eccent r ic i ty  (e ) , or  on the  ’ + +  2 
e l l ipso id  i tself .  
occur in a res t r ic ted  portion of space. 
smaller s i ze  is located i n  the in te r ior  of the earth, then the 

A l l  motions of the e l l i p t i c a l  c lass  w i l l  
If the el l ipsoid of 
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motion of the point w i l l  take place between the earth's surface 
and the larger  ellipsoid. 

in the principal cases where the polynomial ~ ( 1 )  does not have 
multiple roots, in  terms of periodic Functions of unequal 
periods. The e l l i p t i c  coordinate p has a real period 

The rectangular coordinates x, y, and 2; a r e  expressed, 

n 
2 

dx 
T = 4K(k), K(k) = 

0 ,/ 1 - k2 sin2 x 
. 

The real period of the variable A i s  

E 
2 

1 0 J 1  - k " s  
1 

The functions sin w and cos w are of period hr. In  general, x, 
y, and z are not periodic functions of the regularizing time 7 ,  
and the  motion of the point w i l l  therefore occur on nonclosed 
space curves. 

some of the initial data, then the motion of the point will i n  
that case be periodic with respect t o  7 ,  although t h i s  does 
not imply that it will be periodic with respect t o  t h e  time t. 

these cases the polynomial cp(X)  does not have multiple roots. 
The case i i s  t rans i t iona l  between cases d and k. For each set 
of i n i t i a l  data, there ex is t s  some l imiting inclination: a t  
incl inat ions l e s s  than the  limiting value, the polynomial cp(1) 
has four  real and unequal roots. 
than that indicated, then the polynomial cp(1) w i l l  have two 
real and two imaginary roots. 

If the periods T, T and 2rr are commensurate fo r  
1' 

Case d and k may be termed principal cases, dnce i n  

If the inclination is greater 
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We here introduce several concepts t o  afford a more con- 
venient description of the motion. The draconic period of re- 
volution of a satell i te on the j-th c i r cu i t  w i l l  be a term f o r  
the quantity defined by the formula 

c 

j -1 where T 
other words, of the equation 

and -rJ a re  solutions o f  the equation z = 0 or, in 

sh [CJ (T - T ) ]  = 0. 
0 

j-1 The quantit ies T and ~j used here are two successive instants  
of the regularizing time variable 7 ,  a t  which the s a t e l l i t e  
passes from the southern ha isphere  in to  the northern. The r e a l  
solut ions of equation (128) are found from the f onaula 

t 

For each of the cases treated here, we obtain a specified ex- 
pression f o r  the draconic period of revolution, The simplest 
formula is obtained f o r  motion on an el l ipsoid 
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We use the term quasiperigee of a t ra jec tory  t o  describe the 
point a t  which the t ra jec tory  is tangent t o  the smaller ell ipsoid,  
and the term quasiapogee t o  describe the point ,of tangency with 
the larger  ellipsoid. 
generally speaking, not points a t  which the geocentric distance of 
the s a t e l l i t e  assumes extreme values on a given circuit .  The term 
quasianomalistic period of revolution of a s a t e l l i t e  on the i- th 
c i r cu i t  w i l l  be applied t o  the time in te rva l  between two successive 
passages of a point through the quasiperigee. The quasianamalistic 
period is computed using the formula 

The p s i p e r i g e e  and quasiapogee are, 

T i  m 

'm 

where T:-' and T~ are  solutions of the equation m 

f o r  the case d, and of the equation 
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f o r  the case k, 

j- th c i r cu i t  i s  computed using the formula 
The change in the  longitude of the ascending node on the 

In  each case, the coordinate w is  computed by means of the appro- 
p r i a t e  parametric formula, 

For the  change in the angular distance of the quasiperigee 
from the node on the  i-th c i rcu i t  of the s a t e l l i t e  (the angle 
between the radius vectors of two adjacent quasiperigees), we may 
readi ly  derive the formula 
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i i-1 i i-1 i i-1 i 
where Ai-’, X , p, , p , w , w , r , r are the values of 
the e l l i p t i c  coordinates and of  the radius vector f o r  the times 
i-1 i 

and Tm. JR 

In concrete computational work, the  results mentioned i n  
the a r t i c l e  may be put t o  use as follows. Using the specified 

o, yo, z and i n i t i a l  velocity 0 i n i t i a l  data ( i n i t i a l  position x 

xo, yo, 2; ), we cmpute the a rb i t ra ry  constants h, el , and c2. 

The relationship between the arb i t ra ry  constants and the ini t ia l  
data  is found by recourse t o  the  formulas 

- 0 .  

0 

2 2 
1 0 0 

c = & (1 - ko) (1 + A ), (1 36) 

The ini t ia l  values of the e l l i p t i c  coordinates p , 0 lo ,  “0 . 0 

and t h e i r  time derivatives p, 

t he  formulas 

X , and wo are computed using 
0’ 0 



. 
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2 4  2 2 c l f l (r2 - c2) - zo = 0, 
0 0 0  

2 2  2 c2h4 - lo (ro - c2) - zo = 0, 
0 

9 
t a n w  = -  xo 

'0 
0 

(139) 

. sin wo cos wo (k cos wo - i o  s i n  wo) 
w =  0 

x 0 c0s3 wo + yo sin3 wo (1 44) 

The determination of lo, lo, and wo is unique, since ho < 0, 

0 < ko < 1, and w is chosen with the signs of x and y 
0 0 0 

/ 197 
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taken into account, 
and c are  known, ’ 2 If the a rb i t ra ry  constants h, 

w e  then proceed t o  compute the roots of the  polynomials f(1) and 
cp(A).  Finding the  roots  of the polynomial r,p()c) i s  made eas ie r  
by the f a c t  t h a t  the approximate values of two roots a re  known 
from the i n i t i a l  data, in the  case of s a t e l l i t e  motions: 
root i s  approximately equal t o  the r a t i o  of the perigee distance 
t o  the value of c, w h i l e  the  other root  i s  approximately equal t o  
the r a t i o  of the apogee distance t o  c, In the  case of b a l l i s t i c  
t ra jec tor ies ,  one of the roots is approxbately equal t o  the 
r a t i o  of the distance from the center t o  the fur thest  removed 
point on the t ra jec tory  t o  the value of c, After the roots of 
the polynomials f ( p )  and cp(A)  have been determined, the case t o  
which the given motion corresponds w i l l  be h o r n .  Moreover, i n  
investigating the motion, it becomes necessary t o  r e ly  on for- 
mulas f o r  e l l i p t i c  and rectangular coordinates corresponding t o  
the specif ic  case. 

motion of a concrete satellite does not prove t o  be convenient 
i n  every instance, The occasional inconvenience is due t o  the 
f a c t  that detailed tabular data with a large number of places 
f o r  e l l i p t i c  integrals  of  the first and second kinds, and es- 
pec ia l ly  f o r  e l l i p t i c  integrals  of  the  th i rd  kind, a r e  lacking 
i n  the l i t e ra ture ,  
by resorting t o  ser ies  expansions of the solutions obtained i n  
powers of small quantit ies of the order of the f la t tening of 
the earth, The ser ies  expansion of the solution w i l l  be pub- 
l ished in a separate a r t ic le .  

In conclusion, we take th i s  opportunity t o  express our 
appreciation t o  G, N. Duboshin, D, Ye. Okhotsimskiy, and 
M, D. His l ik  f o r  t h e i r  valuable counsel and comments. 

._, 
one 

The use of the formulas derived here t o  describe the 

These problems can be avoided with ease 
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